
Welcome to Modeling Time Dimensions for SAP Business One version for SAP HANA.

In this course, we use the Modeler perspective in the SAP HANA Studio to model a reuse view with a hierarchy in the semantic layer of the SAP Business One version for SAP HANA.

Objecti	ves
Ø	At the end of this unit, you will be able to: • Describe how to model a time dimension
© 2014 SAP AG. All	rights reserved. 2

Г

At the end of this unit, you will be able to describe how to model a time dimension for SAP Business One.

In the previous topic, we created a reuse view to model a dimension for business partners. Now we will create another reuse view for dates.

Later we use the two reuse views as dimensions in a cube for invoices.

Handling Dates in SAP HANA ීo Systems 🛙 🚇 III 🕶 📾 🕮 🚍 🔩 ▶ 🚜 _SYS_AFL SAP HANA does not use functions for ⊿ 🚜 _SYS_BI 🗁 Column Views dates Eunctions Event Even b 🗁 Indexes Procedures SAP HANA comes with pre-built b 🗁 Sequences 👂 🗁 Synonyms tables for time dimensions 🗁 Tables III BIMC ALL CUBES BIMC_CONFIGURATION Tables located in the Catalog under BIMC_DIMENSIONS BIMC_PROPERTIES _SYS_BI folder III BIMC_VARIABLE BIMC_VARIABLE_ASSIGNMENT BIMC_VARIABLE_VALUE M_TIME_DIMENSION table contains M_CONTENT_MAPPING III M_FISCAL_CALENDAR time units for each DateTimeStamp. III M IMPORT SERVER CONFIG III M PACKAGE DEFAULT SCHEMA M_REPLICATION_EXCEPTIONS M_TIME_DIMENSION I M TIME DIMENSION MONTH M_TIME_DIMENSION_WEEK M_TIME_DIMENSION_YEAR b > Triggers

Unlike Microsoft SQL, SAP HANA SQL does not use functions for dates. Instead SAP HANA uses tables.

© 2014 SAP AG. All rights reserved

Conveniently, SAP HANA comes with pre-built tables for time dimensions. We can find these tables in the Catalog under the _SYS_BI folder.

One of the tables is the M_TIME_DIMENSION table. This table has entries for each DateTimeStamp. These entries are used to convert the stamp into units such as years, quarters, months, days and so on.

SE	ELECT TOP 1000 * 1	FROM "_SY	s_bi"."M_tim	E_DIMENS:	ION"							-
	DATETIMESTAMP	DATE_SQL	DATETIME_SAP	DATE_SAP	YEAR	QUARTER	MONTH	WEEK	WEEK_YEAR	DAY_OF_WEEK	DAY	10
1	01.01.0001 00:00:00.0	01.01.0001	00010101000000	00010101	0001	01	01	01	0001	05	01	- (
2	31.12.9999 00:00:00.0	31.12.9999	99991231000000	99991231	9999	04	12	52	9999	04	31	(
3	01.01.1900 00:00:00.0	01.01.1900	19000101000000	19000101	1900	01	01	01	1900	00	01	- (
4	01.01.1995 00:00:00.0	01.01.1995	19950101000000	19950101	1995	01	01	52	1994	06	01	- (
5	02.01.1995 0						01	01	1995	00	02	- (
6	03.01.1995 0						01	01	1995	01	03	- (
7	04.01.1995 0				-		01	01	1995	02	04	- (
8	05.01.1995 0	iew th	e conten	its of t	he		01	01	1995	03	05	- (
9	06.01.1995 0	ahle h	y choosiı	na the			01	01	1995	04	06	- (
10							01	01	1995	05	07	- (
11	08.01.1995 0 C	ontext	t menu o	ption:			01	01	1995	06	08	- (
12	09.01.1995 0						01	02	1995	00	09	- (
13	10.01.1995 0)non (Content				01	02	1995	01	10	- (
14	11.01.1995 0	pen c	Jontent				01	02	1995	02	11	- (
15	12.01.1995 0						01	02	1995	03	12	- (
16	13.01.1995 0						01	02	1995	04	13	- (
17	14.01.1995 0						01	02	1995	05	14	- (
18	15.01.1995 00:00:00.0	15.01.1995	19950115000000	19950115	1995	01	01	02	1995	06	15	(
19	16.01.1995 00:00:00.0	16.01.1995	19950116000000	19950116	1995	01	01	03	1995	00	16	(
<		ш									-	

You can view the M_TIME_DIMENSION table contents by choosing the context menu option: *Open Content.*

In the table you will see an entry for the DateTimeStamp and then entries that can be used to convert the date time stamp to units used in reporting.

🖉 Quick View 🔀 👘			
Filter values	15	Generate Time Data	
▼ SAP HANA Modeler	Generate Time Load time data into	Data time attribute view table	
☆ 🚳 Delivery Units	Calendar Type:	Gregorian	~
☆ 🔢 Generate Time Data	From Year:* To Year:*	2000 2020	
😭 📖 Configure Import Server	Variant Schema:	2020	■
☆ 🗿 Data Provisioning	Granularity:	Year Year	→
☆ 🚵 Import		Month Week Day	
☆ 🛃 Export		Hour Minute Second	
☆ 🍓 Mass Copy		Jecona -	
☆ 🥏 Validate			
☆ 💿 Activate			
☆ 💿 Redeploy			
☆ 🗐 Auto Documentation			
☆ 🎭 Switch Ownership			
M Much Ownership			

You can generate data for this table for the range of dates you wish to use in your analysis. The option to Generate Time Data is found in the Quick Launch menu.

When you generate time data you specify not only the date range, but also the level of granularity.

	New Information View	/ <u> </u>	Out the state
eate an Info	ormation View		Subtype: Time
lect the requi	red view type and enter the details		Choose Calendar Type:
ame:*	OEC_CA_DIM_DATE		Gregorian or Fiscal
abel:	Dimension for Posting Dates	^ ~	Choose Granularity
ackage:*	tests.KSD Browse		View automatically created from
iew Type:	Calculation View	~	
Copy From:		Browse	M_TIME_DIMENSION table.
ubtype:	Time	~	
Calculation Vi			
Type: Graphi		×	Semantics
Calendar Typ	oe: Gregorian ♥		
Granularity:	Second +		
Auto Cre	ate Year Month		Projection
	Week Date		
	Hour Minute		
	Second		

Now that we know more about how dates are handled, we can look at how we can create a reuse view with a hierarchy for posting dates in our analysis.

The steps for creating this view are similar to what we did previously for the business partner dimension, however, there a few different options for time dimensions.

When we choose the Subtype Time, we have options for the Calendar Type: either Gregorian or Fiscal.

After choosing the Calendar Type you can choose the granularity from as large as "year" to as small as "second".

Time views use the M_TIME_DIMENSION table by default. The view also will automatically create a hierarchy for you.

PivotTable Field List	
Choose fields to add to report:	
Document Date	
田 Document Date Month Document Date Quarter □	
	MONTH
🖃 📄 Due Date	
⊡ Due Date Month	
田 Due Date Quarter Due Date Year □ Due Date Year	DAY

Typically in reports, we want to see data summarized by time periods such as years, months or days. We may want to see our revenues by geographical breakdowns like countries, regions and cities, or see our budget figures broken out by cost center levels. Hierarchies allow us to do this. They allow us to structure our reports and summarize by natural levels of attributes.

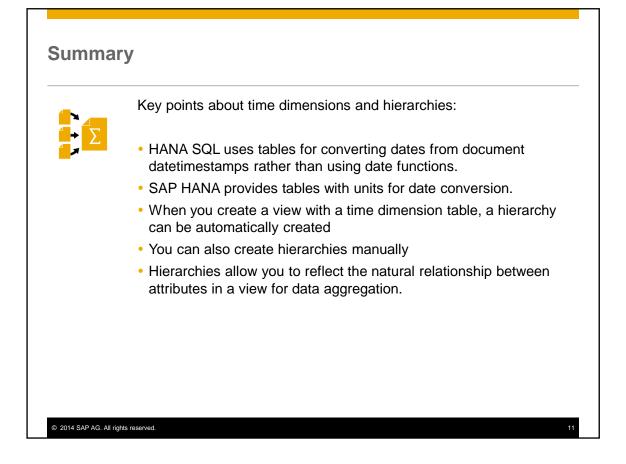
Hierarchies from SAP HANA can be used in multi-dimensional expression (MDX) queries presented in Microsoft Excel for interactive analysis.

- Creation History	16		Hierarchy		
 Gregorian Hierarchy automatically created 	Edit hierarch				
View hierarchy definition	Name:* Label:	Gregorian_Hierarchy Gregorian_Hierarchy			
Details	Hierarchy Type:	* Level Hierarchy			
Columns(28) View Properties Hierarchies(1) Parameters/Variables	Node Adva	nced			
Local	Node Style:*	Name Path		~	
Name Label	1 YEAR 2 QUAI	RTER REGULAR	Order By YEAR QUARTER	Sort Direction Ascending Ascending	Add Remove
Gregorian_Hiera Gregorian_Hierarc	3 MON 4 <clic< td=""><td>ITH REGULAR</td><td>MONTH</td><td>Ascending</td><td>Move Up Move Dowr</td></clic<>	ITH REGULAR	MONTH	Ascending	Move Up Move Dowr
You can add or remove levels within an hierarchy					

Here is a look at the hierarchy details for our time dimension. This is a hierarchy for Year, Quarter and Month.

When you use time dimension tables for a view, a hierarchy can be automatically created. Because we chose the Gregorian calendar, the Gregorian Hierarchy was automatically used. Hierarchies can also be created manually for other dimensions containing attributes.

The Hierarchy tab lists existing hierarchies for the view. You can view the hierarchy definition by choosing it.

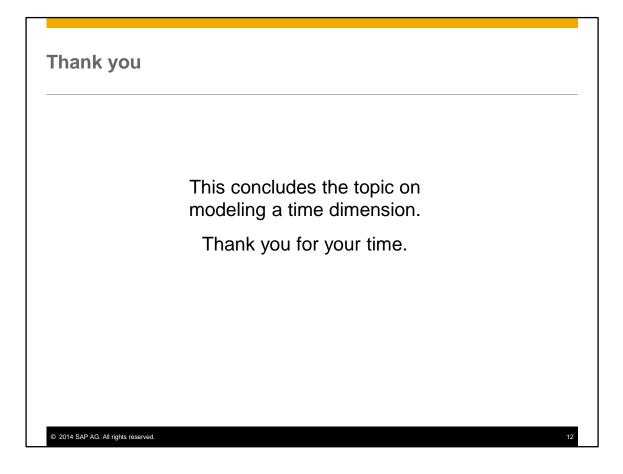

You can add new levels to the hierarchy or remove levels. You can also change the order of the columns in a hierarchy.

Once a hierarchy is built, it can be reused and copied across models.

To create a reuse view for p	osting date	
Physical table: M_TIME_	DIMENSION	
 Output: Posting Date Posting Month Posting Year Hierarchy of Year-Quarter-Mont 		

Г

We will create a reuse view for the posting date based on a particular physical table automatically created by SAP HANA. We will build an attribute table based on the physical table for dates and times. The physical table M_TIME_DIMENSION is found in the system schema.


HANA SQL uses tables for converting dates from document DateTimeStamps rather than using date functions as MS SQL does.

SAP HANA provides pre-built tables with units for date conversion. You can generate the data for these tables for the time period and granularity you choose.

When you create a view with a time dimension table, a hierarchy can automatically be created because the relationship between the columns in the table already exists.

You can also create hierarchies manually in your views, as well as add or remove columns from a hierarchy.

Hierarchies allow you to reflect the natural relationship between attributes in a view and to aggregate data according to that relationship.

This concludes the topic on modeling a time dimension with a hierarchy for SAP Business One. Thank you for your time.

© 2015 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Excel, Outlook, PowerPoint, Silverlight, and Visual Studio are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, System i, System iS, System p, System p5, System x, System z, System z10, z10, z10, z/0K, J20S, OS/300, Enterprise, Power/M, Power Architecture, Power Systems, POWER7, POWER6, POWER6, POWER6R, PowerHA, pureScale, PowerPC, BladeCenter, System Storage, Storwize, XIV, GPFS, HACMP, RETAIN, DB2 Connect, RACF, Redbooks, OS/2, AIX, Intelligent Miner, WebSphere, Tivoli, Informix, and Smarter Planet are trademarks or registered trademarks of IBM Corporation.

Linux is the registered trademark of Linus Torvalds in the United States and other countries.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are trademarks or registered trademarks of Adobe Systems Incorporated in the United States and other countries.

Oracle and Java are registered trademarks of Oracle and its affiliates

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of Citrix Systems Inc.

HTML, XML, XHTML, and W3C are trademarks or registered trademarks of W3C[®], World Wide Web Consortium, Massachusetts Institute of Technology.

Apple, App Store, iBooks, iPad, iPhone, iPhoto, iPod, iTunes, Multi-Touch, Objective-C, Retina, Safari, Siri, and Xcode are trademarks or registered trademarks of Apple Inc.

IOS is a registered trademark of Cisco Systems Inc.

RIM, BlackBerry, BBM, BlackBerry Curve, BlackBerry Bold, BlackBerry Pearl, BlackBerry Torch, BlackBerry Storm, BlackBerry Storm2, BlackBerry PlayBook, and BlackBerry App World are trademarks or registered trademarks of Research in Motion Limited.

© 2015 SAP AG. All rights reserved.

Google App Engine, Google Apps, Google Checkout, Google Data API, Google Maps, Google Mobile Ads, Google Mobile Updater, Google Mobile, Google Store, Google Sync, Google Updater, Google Voice, Google Mail, Gmail, YouTube, Dalvik and Android are trademarks or registered trademarks of Google Inc.

INTERMEC is a registered trademark of Intermec Technologies Corporation.

Wi-Fi is a registered trademark of Wi-Fi Alliance.

Bluetooth is a registered trademark of Bluetooth SIG Inc.

Motorola is a registered trademark of Motorola Trademark Holdings LLC.

Computop is a registered trademark of Computop Wirtschaftsinformatik GmbH.

SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP BusinessObjects Explorer, StreamWork, SAP HANA, and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and other countries.

Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other Business Objects products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of Business Objects Software Ltd. Business Objects is an SAP company.

Sybase and Adaptive Server, iAnywhere, Sybase 365, SQL Anywhere, and other Sybase products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of Sybase linc. Sybase is an SAP company.

 $\label{eq:crossgate} Crossgate, m@gic EDDY, B2B 360°, and B2B 360°. Services are registered trademarks of Crossgate AG in Germany and other countries. Crossgate is an SAP company.$

All other product and service names mentioned are the trademarks of their respective companies. Data contained in this document serves informational purposes only. National product specifications may vary.

The information in this document is proprietary to SAP. No part of this document may be reproduced, copied, or transmitted in any form or for any purpose without the express prior written permission of SAP AG.

13